West Fork White River Stream Restoration Project ANRC Project 07-400

Watershed Conservation Resource Center

Beaver Water District, Northwest Arkansas Land Trust, Arkansas Game and Fish

Project Objectives

- Utilize reference or stable stream reaches to assist in restoration design
- Reduce streambank erosion
- Quantify sediment reduction
- Improve aquatic habitat
- Increase pollutant removal potential
- Improve local ecology
- Transfer technology

Major Project Tasks

Develop QAPP ✓ (July '08) Conduct Pre-Implementation Data **\blacksquare** Bank erosion inventory \checkmark Install and survey toe pins \checkmark Survey site morphology Fall '08 Survey Reference Reach Fall '08 Re-survey toe pins to estimate erosion Develop Conservation Easement Program Develop restoration plan Winter '08-Implement Plan 2009 Re-inventory Streambanks

Project Location

Site Specifics

Drainage Area 12 mi²
Rural Watershed

Forest
Pasture
~2000' of Stream Channel

Rosgen C-Type Stream
3 Landowners

BEHI Mapping

7 Mapped Areas ■ Total Estimate of Eroding Banks 1400' Max Estimated Erosion Rate: $\sim 10 \text{ ft/yr}$ Estimated Sediment Load: 845 ton/yr

Toe Pin Installation

7 Toe Pins Installed (06/24/2008)
 Used to Determine Erosion Rates

Toe Pin Installation

Toe Pin 3 Profile as of 6/25/2008

Site Photos

Site Photos

Site Photos

Demonstration of Natural Channel Design to Restore a Stream Reach Draining an Urbanized Sub-Watershed of Mud Creek ANRC Project 06-600

Watershed Conservation Resource Center

City of Fayetteville, AR

Project Objectives

- Utilize reference or stable stream reaches to assist in restoration design
- Reduce streambank erosion
- Quantify sediment reduction
- Improve aquatic habitat
- Increase pollutant removal potential
- Improve aesthetics
- Transfer technology

Major Project Tasks

Develop QAPP

Conduct Pre-Implementation Data

- Bank erosion inventory \checkmark
- Install and survey toe pins \checkmark
- **Survey site morphology** \checkmark
- Survey Reference Reach
- Re-survey toe pins to estimate erosion
- Develop restoration plan \checkmark
- Implement Plan
- Re-inventory Streambanks

Project Location

Project Location

Site Specifics

Drainage Area 1.25 mi²
Urbanized Basin
~1500' of Stream Channel
Rosgen B-Type Stream

Toe Pin Measurement and Analysis

 Erosion Rate: Range 0.2 to 0.7 ft/yr
 Estimated Sediment Load: 120,000 lb/yr

Design Constraints

Floodplain No-Rise Park Infrastructure ■ Trails Bridges ■ Sewer Lines Fixed Flood Prone Width Limited Allowance for Vegetation Removal Presence of Park Patrons

Design Specifics

Detailed Data Evaluation Topographic Survey Geomorphologic Analysis Hydrology Analysis 40 Step Engineering Process Dimension, Pattern. Profile Flow Capacity Sediment Transport Bankfull Discharge: 130 cfs Design Cross Section: 30 ft² Bankfull Slope: 0.01180 ft/ft Bankfull Shear: 1.04 lb/ft²

Structure Design

J-Hook Cross-Vanes Short Vanes Rock Sizing ■ Based on shear force ■ Rock with 3 ft. B-axis ■ Approximately ³/₄ ton per rock Vane Slope and Length ■ 20' length with a slope of 8-10%

Revegetation Plan

- Critical Element of the Restoration Design
 - Provides Stability (high and moderate flows)
 - Habitat
 - Forage
 - Aesthetics
- Consult with local specialists
- 4000 Individual plants
- Native Species by Sun/Water needs
 - Inland Sea Oats, Prairie Drop Seed
 - Button Bush, Spice Bush
 - Green Ash, Plum, Wafer Ash, Sycamore
- Irrigation into late fall
- Additional planting in the fall

XS3 Before

Post Construction Rain

If you build it, IT WILL RAIN (i.e. T-storms.....TD Gustav.....TS Ike

Post Construction Rain

Storm Events within 4 weeks of implementation

March 18, 2008 Storm Event

March 18, 2008 Storm Event

September 23, 2008 Storm Event

September 23, 2008 Storm Event

Lessons Learned and Recommendations

- Get necessary permits
 - 404 Permit
 - ADEQ Short Term Activity Authorization
 - Floodplain Administrator Approval
- When working within incised channels, structures will have less effect during flows above bankfull
- Address areas where channel constriction may occur (pinch point)
- Plan for irrigation if working in summer/fall
- Plant vegetation as you work on channel
- Maintain continuous oversight

Project Summary

All Project Objectives Were Achieved Streambank erosion reduced Reduced sediment loads Safety Hazards were eliminated Aesthetics were improved Very positive feedback from park users Improved Water Quality ■ Increased clarity Increased pool habitat

Thanks to Our Partners

 U.S EPA Region VI
 Arkansas Natural Resources Commission
 City of Fayetteville

 City Engineering
 Parks and Recreation

Matthew A. Van Eps, PE

Matthew A. Van Eps, PE vaneps@watershedconservation.org (501) 352-7294