Lee Creek and Upper Frog Bayou Watershed Management Plans – Phase II 319 Grant Project No. 13-200

Lance McAvoy, Environmental Manager

Arkansas Natural Resource Commission 2015 Nonpoint Source Pollution Stakeholder and Project Review Meeting September 24, 2015

Project Overview

- Phase I Recap
- Phase II Scope & Goals
- Phase II Watershed Information
- Phase II Monitoring
- Phase II Unified Stream Assessments
- Phase II Stakeholder Development and Public Education
- Phase II Assessments and Ranking Sub-watershed Implementation Measures
- Phase II WMPs Status
- Conclusions & Advice

Phase I - Recap

- Purpose:
 - Develop an EPA 9 elementWMP for Lee Creek
 - Watershed and Frog Bayou
 - Watershed
 - Have EPA
 - approve/accept/bless...
 - both WMPs

Phase I - Recap

- Work Performed:
 - Data analysis of previous monitoring performed in the watersheds
 - Storm event sampling
 - Baseline sampling
- Outcome:
 - EPA did not accept due to no modeling, load reduction values, little stakeholder interaction/education, adaptive management, more data

Phase I - Recap

- We weren't surprised
- Both plans completed in one (1) year
- Phase I looked at the entire Frog Bayou Watershed
- Never talked to Oklahoma about Lee Creek
- "Overall not a bad plan"
- ANRC willing to help with Phase II

Phase II - Scope & Goals

- Update, revise and finalize the watershed management plan (WMP) for the Lee Creek and Frog Bayou watersheds
- Perform additional high flow (storm event) monitoring
- Perform unified stream assessments in key sub-watersheds
- Include a stakeholder development and public education
- Improve accuracy of loading assessments, assignment of implementation priorities and establishment of load reduction goals
- Identify critical sub-watersheds at a small scale (12 digit HUC and smaller) and rank implementation measures to reduce non-point source pollution loading from key areas

Phase II - Watershed Information

The Lee Creek watershed (HUC-11110104) is approximately 447 mi² in size. The watershed is located in the Boston Mountains and Arkansas River Valley Ecoregions, primarily in Crawford and Washington Counties in Arkansas and Adair and Sequoyah counties in Oklahoma. The watershed drains directly into the Arkansas River Basin. Lee Creek has an impoundment (Lee Creek Reservoir) just upstream of its confluence with the Arkansas River that serves as a drinking water source for Fort Smith.

Phase II - Watershed Information

• Oklahoma's 303(d) list has a section of Little Lee Creek listed for bacteria and sections of Lee Creek listed for bacteria and metals.

Lee Creek Basin, Sub-Watersheds, & Sample Sites

Phase II - Watershed Information

- The Frog Bayou watershed is a part of the Frog-Mulberry Watershed (HUC- 11110201), and is approximately 271 mi² in size.
- The Upper Frog Bayou watershed (HUC-1111020104) has an impoundment (Lake Fort Smith) that serves as a drinking water source for Fort Smith. The upper portion of the watershed above Lake Fort Smith which drains directly into the lake is approximately 84 mi² in size, and is located in the Boston Mountains Ecoregion (Omernick, 1987), primarily in Crawford County, Arkansas.

Upper Frog Bayou, Sub-Watersheds, & Sample Sites

- Monitoring of the watershed have been ongoing since the 1990's
 - Monitored both baseline and storm flows in streams.
 - Monitored macroinvertebrates in streams
 - Monitored fish population and diversity in streams
 - Monitored nutrients in lake/reservoir
 - Monitored Chlorophyll-a in lake/reservoir
 - Monitored fish population and diversity in lake/reservoir
- This project included additional baseline and storm flows in streams as well as flow data to determine loading of pollutants during storm flow events.

Lee Creek - TSS

Lee Creek – T. Phosphorous

					Mountain			
	Upper Lee	Buckhorn	Cove	Jenkins	Fork	Little Lee		
Date		Taxa Richness						
3/7/2003	17	16	24	24	17	23		
2/20/2004	19	25	21	22	28	21		
3/2/2005	23	23	29	28	30	22		
3/9/2007*	37	32	39	44	48	48		
3/20/2010*	30	35	53	42				
3/3/2011*	32	36	58	36	61			
3/6/2012*	38	21	46	42	33			
3/21/2013*	30	24	40	28	29			
	-	-	EPT Richness	-				
3/7/2003	7	5	13	10	11	11		
2/20/2004	10	14	11	12	14	14		
3/2/2005	15	14	18	18	18	13		
3/9/2007*	19	16	20	20	22	25		
3/20/2010*	15	18	23	19				
3/3/2011*	12	17	23	13	26			
3/6/2012*	15	11	17	19	18			
3/21/2013*	13	12	16	15	14			
		A	verage Tolerand	ce				
3/7/2003	4.67	4.57	4.35	4.50	4.36	4.66		
2/20/2004	4.46	3.87	4.21	4.20	4.67	4.42		
3/2/2005	3.86	4.11	4.06	4.00	4.20	3.84		
3/9/2007*	3.25	4.13	3.51	3.59	4.21	4.03		
3/20/2010*	3.73	4.26	4.50	4.05				
3/3/2011*	3.96	3.45	3.96	3.68	4.18			
3/6/2012*	5.13	5.03	5.56	5.25	5.19			
3/21/2013*	4.42	4.85	5.10	4.40	4.22			
			% Clingers					
3/7/2003	35.3	21.4	42.9	39.1	41.2	45.5		
2/20/2004	31.6	43.5	47.6	40.0	42.9	36.8		
3/2/2005	50.0	28.6	44.8	51.9	50.0	52.4		
3/9/2007*	27.0	18.8	33.3	27.3	30.8	47.9		
3/20/2010*	48.1	25.7	24.5	28.6				
3/3/2011*	25.7	30.6	19.0	55.1	34.9			
3/6/2012*	26.3	28.6	19.6	23.8	30.3			
3/21/2013*	40.0	33.3	45.0	42.9	48.3			
*Pennington and	Associates comp	osite method						

	Upper Lee	Buckhorn	Cove	Jenkins	Mountain Fork	Little Lee
Date			Stream C	ondition Inde	ex	
3/7/2003	12	12	20	18	16	16
2/20/2004	14	20	18	20	16	20
3/2/2005	20	18	20	20	20	20
3/9/2007*	18	16	18	18	18	20
3/20/2010*	20	18	18	18		
3/3/2011*	18	18	16	20	18	
3/6/2012*	14	12	12	14	14	
3/21/2013*	20	14	16	20	20	

*Pennington and Associates composite method

Site	Season	TSI (SD)	TSI (TP)	TSI (Chl-a)	
		58.55	59.57		
L1	Winter	30.91-77.12	47.35 - 79.04		
		Eutrophic	Eutrophic		
			63.96		
L1	Summer	Summer 53.93 - 67.13		47.35 - 90.91	
		Eutrophic	Eutrophic		
		57.98	60.72	54.73	
L2	Summer	52.56 –67.13	47.35 – 80.56	46.21-60.80	
		Eutrophic	Eutrophic	Eutrophic	
L2		59.10	59.70	34.20	
	Winter	32.30 - 77.10	47.40 - 83.20	0 – 47.80	
		Eutrophic	Eutrophic	Oligotrophic	

Lee Creek Reservoir Monitoring Results

Upper Frog Bayou - TSS

Upper Frog Bayou – T. Phos.

	Frog Bayou -1	Jack -1	Jones -1
Date	Таха Г	Richness	-
3/6/2003	24	22	28
2/20/2004	25	28	33
3/10/2005	30	29	32
3/20/2010			41
3/3/2011*	40	36	36
3/28/2012*	46	53	34
3/4/2013*	19	25	28
	EPT Richness		
3/6/2003	13	10	14
2/20/2004	14	15	18
3/10/2005	17	17	18
3/20/2010			21
3/3/2011*	17	15	12
3/28/2012*	16	18	18
3/4/2013*	9	10	12
	Average Tolerance	•	
3/6/2003	4.52	4.14	4.26
2/20/2004	4.72	4.22	4.25
3/10/2005	4.18	4.16	4.11
3/20/2010			3.66
3/3/2011*	3.45	3.82	4.33
3/28/2012*	5.49	5.62	4.67
3/4/2013*	4.45	4.40	4.30
	% Clingers		
3/6/2003	34.8	30.0	42.3
2/20/2004	37.5	30.8	45.2
3/10/2005	39.3	40.7	40.0
3/20/2010			31.7
3/3/2011*	38.9	13.2	46.1
3/28/2012*	17.4	22.6	35.3
3/4/2013*	31.6	20.0	35.7

	Frog Bayou -1	Jack -1	Jones -1
Date	Strea	am Condition I	ndex
3/6/2003	12	14	16
2/20/2004	12	18	20
3/10/2005	20	20	20
3/20/2010*			18
3/3/2011*	20	16	16
3/28/2012*	12	12	14
3/4/2013*	8	10	16

*Pennington and Associates composite method.

*Pennington and Associates composite method.

Site	Season	TSI (SD)	TSI (TP)	TSI (Chl-a)
		44.5	58.9	41.6
LFS 01	Summer	28.1 – 84.5	47.4 – 83.8	24.7 – 52.3
		Mesotrophic	Eutrophic	Mesotrophic
		45.0	56.4	37.4
LFS 01	Winter	19.2 – 65.4	47.4 - 77.3	29.7 – 45.4
		Mesotrophic	Eutrophic	Oligotrophic
		48.7	56.4	
LFS 04 Summer	Summer	27.7 – 67.1	47.4 – 77.3	
		Mesotrophic	Eutrophic	
LFS 04		52.2	57.1	
	Winter	23.6 – 71.3	47.4 – 75.4	
		Eutrophic	Eutrophic	

Lake Fort Smith Monitoring Results

Frog Bayou Baseline Flow

Frog Bayou Storm Flow

Phase II - Unified Stream Assessments

Lee Creek

Upper Frog Bayou

Phase II - Unified Stream Assessments

Lee Creek

Upper Frog Bayou

USA Stream Reach	Significant Problem/Issue		Significant Problem/Issue		Per Ler	cent of Stream ngth Affected/# instances
LC-1 – from canoe access off HWY 220 to HWY 59 at Natural Dam	1.	Stream bank erosion	1.	22%		
LC-2 – from HWY 59 to HWY 101 Bridge	1. 2. 3.	Stream bank erosion Storm water outfalls Channel alteration	1. 2. 3.	23% 8 Outfalls Overall reach		
LLC-1	1. 2.	Stream bank erosion Stream Crossings	1. 2.	14% 2 crossings		
LLC-2	1. 2.	Stream bank erosion Utility crossing	1. 2.	39% (2 in each reach)		
WC-1	1.	Stream bank erosion	1.	19%		
JC-1	1.	Stream bank erosion	1.	37%		
MFC-1	1. 2.	Stream bank erosion Impacted buffers	1. 2.	28% 6 areas		
CC-1	1. 2.	Stream bank erosion Impacted buffers	1. 2.	12% 4 areas		

Stream Reach	Significant Problem/Issue	Percent of Stream Length Affected by Number Issue
Jones-1 - Starting near confluence of Frog Bayou upstream to Jones Fork Rd. crossing (1.3 mi)	 Stream bank erosion Impacted riparian buffers 	1- 20% 2- 3.3%
FB-1 – Starting at Bidville Rd crossing downstream approximately 1.5 mi.	 Stream bank erosion Impacted riparian buffers 	1- 17% 2- 7.6%
FB-2 – Beginning at Ash Rd. (CR 333) and downstream to confluence with Hurricane Creek (3.3 mi.)	 Stream bank erosion Impacted riparian buffer Outfall - Field drain Stream crossings (roads, railroad) 	1- 19% 2-0% ¹ 3- n/a 4- n/a

¹Impacted riparian areas did occur in reach FB-2, but were very minor or only associated with road/railroad crossings.

Phase II - Unified Stream Assessments

Everyone who lives, plays, or works in the watershed and cares about clean drinking water is a stakeholder and welcome. Come and have a voice in protecting the Lee Creek Watershed, Together we can make a difference!!!

Par More Information Call 478-784-2887 or send LeeGreek/MPaParEntthAR.com

FROG BAYOU WATERSHED MANAGEMENT PLAN PUBLIC & STAKEHOLDER MEETING Wedneeday, July 30, 2014 6:00 pm - 7:30 pm Lake Fort Smith State Park 15458 Sheperd Springe Rd, Mountainburg, AR 72946

Everyone who lives, plays, or works in the watershed and cares about clean drinking water is a stakeholder and welcome. Come and have a voice in protecting the Frog Bayou Watershed. Together we can make a difference!!!

For Mars Information Call 478-784-2887 or anal Produced MMPOPOrtSorthARace

- Hardest part of the project.
- Needed to be done as part of Phase I.
- Some citizen groups did attend as well as private citizens
 - Arkansas Master Naturalist
 - The Nature Conservancy
 - Arkansas Canoe Club
- Most just wanting information, some stated they had nothing better to do that night.

- Mostly state agencies showed up.
 - Arkansas Department of Health
 - Arkansas Game & Fish
 - Arkansas Department of Environmental Quality
 - Arkansas State Parks
 - US Forest Service
 - Oklahoma Water Resource Board
 - Oklahoma Conservation Commission
 - Oklahoma Scenic Rivers Commission

- Still ongoing
 - Web Site
 - Class Presentations
 - Signage
 - Brochures
 - Radio
 - TV
 - Meetings
 - Tours
 - Anything we can think of and afford to do.....

- In general, water quality during baseline flow events, when the streams were not directly influenced by storm water runoff, was good. However, storm water runoff events did result in moderate TSS and nutrient levels that when coupled with high flow volume, as is typical of Ozark rain events, are capable of delivering significant sediment loading from each sub-watershed.
- It is the goal to continually improve upon the drinking water quality and to protect the watershed from water quality degradation. In order to meet this goal a proactive target for 10% reduction of sediment and phosphorus loading.

- Many factors play into determining which sub-watersheds are priority to address with implementation efforts and what impacts need to be addressed first. To aid in this analysis a matrix was developed to consider each of the impact assessment categories including;
 - Storm water TSS loading,
 - Storm water nutrient loading,
 - Percent pasture,
 - Amount of impacted riparian buffers,
 - Amount of bank erosion,
 - Miles of unpaved roads, and
 - Concentration of agricultural animals.

Lee Creek

Rank #	TSS Loading	Nutrient Loading	%pasture	Impacted riparian	Bank erosion	Cattle	Unpaved Roads
1	MFC-1	MFC-1	WC-1	LC-2	LLC-2	LC-1	LC-2
2	LLC-2	LC-1	LLC-1	WC-1	JC-1	WC-1	LLC-2
3	LC-1	LLC-2	LC-2	MFC-1	MFC-1	CC-1	WC-1
4	JC-1	CC-1	CC-1	CC-1	LC-2	LC-2	LC-1
5	CC-1	LLC-1	LC-1	LLC-2	LC-1	LLC-1	LLC-1

Upper Frog Bayou

Rank #	TSS Loading	Phosphorus Loading	% Pasture	Impacted Riparian	Bank Erosion	Cattle	Unpaved Roads
1	FB-1	FB-1	Jones-1	Lake	FB-1	FB-1	Lake
2	Jones-1	Jones-1	FB-1	Jones-1	Jones-1	Jones-1	Jones-1
3	Lake	Lake	Lake	FB-1	Lake	Lake	FB-1

Sub-watershed	Score
FB-1	18
Jones-1	15
Lake (FB-2)	9

Sub-watershed	Score
LLC-2	8
MFC-1	8
WC-1	8
LC-2	7
LC-1	6
LLC-1	2
JC-1	2
CC-1	1

Lee Creek

Rank	Location	Impact/Disturbance
1	MFC-1	Stream bank erosion
2	LLC-2	Stream bank erosion
3	LC-2	Stream bank erosion
4	LC-1	Stream bank erosion
5	WC-1	Pasture run-off
6	LC-2	Pasture run-off
7	LLC-2	Pasture run-off
8	MFC-1	Hwy 59 corridor storm water runoff
9	LC-2	Urban run-off
10	WC-1	Urban run-off
11	LC-1	Unpaved Roads
12	LLC-2	Unpaved Roads

Upper Frog Bayou

Rank	Sub- watershed	Management Type	Management Action (Practice)
1	FB-1	Restoration	Stream bank stabilization
2	Jones-1	Restoration	Stream bank stabilization
3	Lake (FB-2)	Restoration	Stream bank stabilization
4	FB-1	BMP	Pasture management BMPs
5	Jones-1	BMP	Pasture management BMPs
6	Jones-1	BMP	Unpaved roads maintenance/upgrade
7	FB-1	BMP	Unpaved roads maintenance/upgrade
8	Lake (FB-2)	BMP	Unpaved roads maintenance/upgrade
9	Lake (FB-2)	BMP	Urban (developed areas) storm water BMPs
10	FB-1/Jones-1	Restoration	Restoration of riparian buffers on rural and urban land

Phase II - WMPs Status

• The plans are done and EPA

has accepted

them!!!!!!!!!

Conclusions & Advice

Advice

- Start the public education & stakeholder process as early as possible.
- Assemble a good team and have clearly defined goals.
- Don't take on more than you can handle or areas outside of your control.
- If it is unimpaired, do a WMP now before it is too late.

Conclusion

- WMP process is very rewarding.
- There are many people who have gone before, use their knowledge.
- Protection is better than correction.

Thank You and...

ANRC (Tony Ramick and Dusty Rains)

GBM^c & Associates (Greg Phillips & Crew)

Arkansas State Parks, Lake Fort Smith State Park

City of Fort Smith Watershed Management Team (Tim Smith, Don Clover, Katie Yoder, Dax Dupire)