White River Bank Restoration and Monitoring Project ANRC Project No. 13-1100

Matt Van Eps, Watershed Conservation Resource Center ANRC 2015 NPS Program Annual Meeting September 23 and 24, 2015

Project Goal & Objectives

Goal

- Reduce streambank erosion along a minimum of 1,250 feet of riverbank on the White River
 - 750 feet of bank reconstruction using toe-wood techniques
 - location near the City of Fayetteville waste water treatment plant

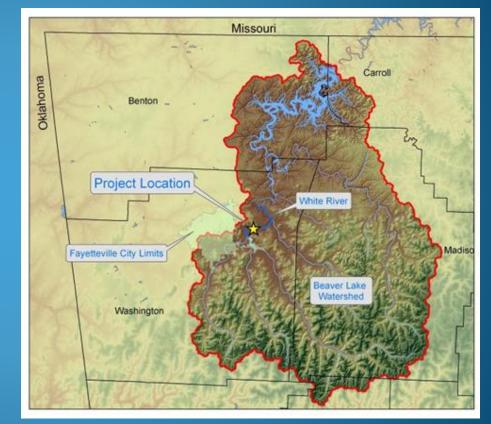
Project Goal & Objectives

Objectives

- Reduce sediment and phosphorus loadings to the White River
- Develop a site specific, riverbank restoration plan which
 - addresses bank instability;
 - meets landowner and local objectives;
 - maximizes sediment & phosphorus reduction;
 - maximizes habitat restoration.
- Evaluate the effectiveness of riverbank restoration
 - quantify sediment and nutrient loads
 - assess aquatic habitat and fish communities
- Increase awareness and promote the use of natural channel design among landowners and the public

Severe Streambank Erosion Source of Sediment and Nutrients to Rivers

What does bank erosion look like?


Project Location and Funding

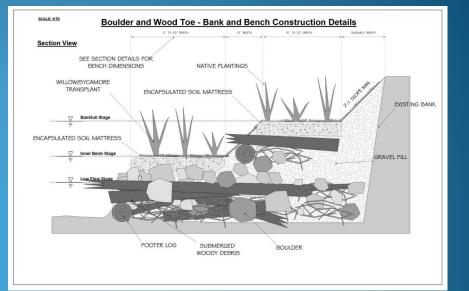
Beaver Lake Watershed

- White River
- City of Fayetteville Noland Wastewater Treatment Plant

Project Funding

- Section 319 (h) NPS Grant
 - Administered by ANRC
 - Funding Through US EPA
- Matching Funds
 - City of Fayetteville & CH2MHill
 - Beaver Water District
 - Beaver Watershed Alliance
 - ADEQ

Project Partners


- Watershed Conservation Resource Center
- Arkansas Natural Resource Commission
- US Environmental Protection Agency
- City of Fayetteville
- CH2M Hill
- Beaver Water District
- Beaver Watershed Alliance
- Arkansas Department of Environmental Quality

Restoration Plan Development

- Site Geomorphology Data Collected
- Topographical and Other Survey Data Collected
- Toe-wood structure will be the basic design technique

Initial Monitoring

- Streambank Profiles Collected
 - Seven Sites Evaluated
- Determined
 - Bank Erosion Hazard Index
 - Near Bank Shear Stress

Bank ID	XS7	
Bank Location	Bend	
Root Depth (ft)	1.5	
Root Density	20%	
Bank Angle	64°	
Surface Protection	0%	
Bank Material Points	0	
Stratification Adjustment	0	
Bank Height Ratio	1.5	
Bank Length(ft)	270	
Bank Height (ft)	21	
NBS	MODERATE	
BEHI Rating	VERY HIGH	

Initial Monitoring

- Streambank Soil Samples Collected
 - 17 samples collected

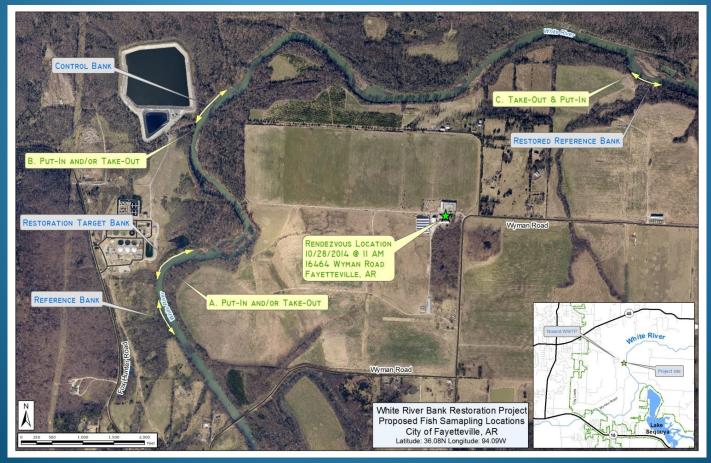
Sampling Results

Parameter	Min	Max
Bulk Density (lb/ft ³)	74.9	93.1
T. Phosphorus (lb/ton of sediment)	0.55	1.2
T. Nitrogen (lb/ton of sediment)	1.5	3.3

Sample ID	WWTP 03-02	
Bulk Density (lb/ft³)	82.8	
Clay Fraction %	28.0	
Soil Type	Clay Loam	
Total N (lb/ton)	1.94	
Total P (lb/ton)	0.86	

Initial Monitoring

- Initial Fish Sampling Conducted
- October 2014



Four Streambanks Selected to Monitor

- Eroding Streambank Control
- Eroding Streambank To be Restored
- Restored Streambank
- Reference Streambank

Outreach

• Scheduling two native seed collection events with volunteers to be used at restoration site

Volunteers collecting wild ryes on the White River

Next Steps

- Follow-up erosion monitoring (Oct 2015)
- Gather construction materials (Ongoing)
- Design development (Winter 2016)
- Obtain Permits (Spring 2016)
 - ADEQ STAA
 - Corps of Engineers 404 Permit
 - Fayetteville Floodplain Development Permit
- Develop bid documents/select contractor (Spring 2016)
- Construct project (Summer 2016)
- Post construction monitoring
 - As-built survey
 - Fish sampling

2012 White River Streambank Restoration Update

Site Transformation

2012 White River Streambank Restoration Update View From the River

2012 White River Streambank Restoration Update Sediment & Phosphorus Reduction to Date

Bankfull Flow: 12,500 cfs

Water Year	Hours Above Bankfull	Max Discharge (cfs)	Date	Number of Bankfull Events
2008	19	28,100	9/14/2008	2
2009	15	18,400	9/22/2009	2
2010	31	38,100	10/9/2009	4
2011	85	52,900	4/25/2011	4
2012	12	13,000	11/8/2011	2
2013	0	11,800	8/10/2013	0
2014	10	16,400	3/16/2014	1
2015	49	22,200	5/24/2015	4

Three + Years Since Construction

- Sediment Reduction: 3 yr X 3,600 ton/yr
 - <u>10,800 tons</u>
- T. Phosphorus Reduction: 3 yr X 3,500 lb/yr
 - <u>10,500 lbs</u>

Questions?

Matt Van Eps, PE vaneps@watershedconservation.org