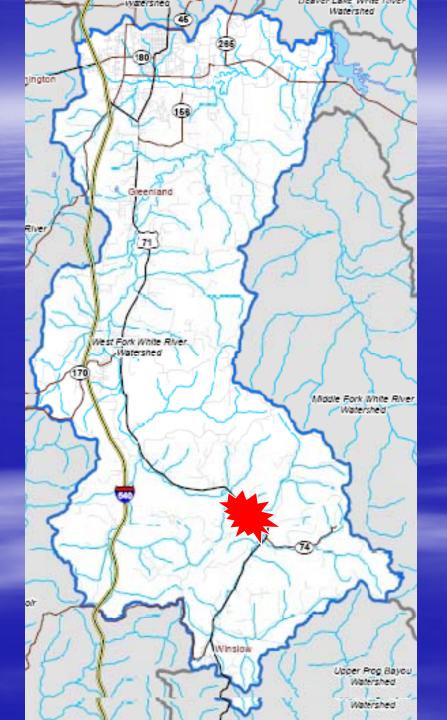
West Fork of the White River Stream Restoration Monitoring



Dan DeVun Ecological Conservation Organization <u>devun@ecoconservation.org</u> (501) 372-7895

Introduction

Collect water quality samples before, during, and after the implementation of the restoration project at locations upstream and downstream of the restoration site.

Goals/Objectives

establish two water quality monitoring stations that are representative of the area and the restoration project
accurately determine

nutrient and sediment loading at the monitoring stations

determine the effects of the restoration project on water quality

 gain a better understanding for the chemical and physical dynamics of project area in the watershed

LOADING

•Requires daily <u>DISCHARGE</u> data, therefore continuous <u>STAGE</u> data.

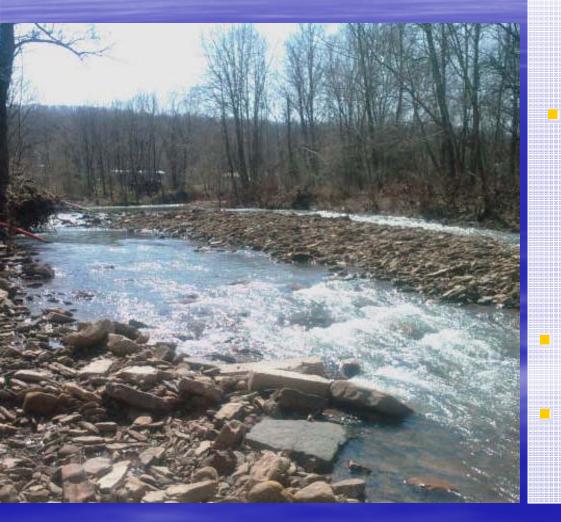
•Requires daily sample concentrations.

 No USGS Station
 Flashy Kiver, short and steep hydrograph.

•River has no mercy on costly instruments.

Development of Discharge Rating Curve

Sontec Rivercat Marsh McBirnney Flowmate 2000 Wading Rod

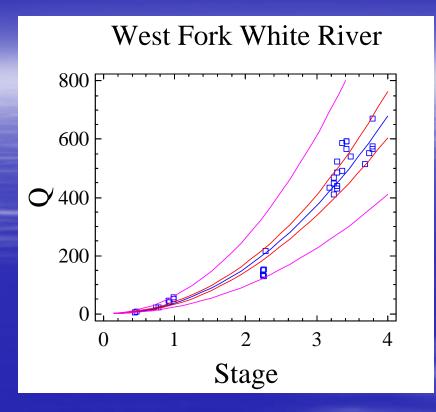

Objective: Determine river's discharge at as many different river stages as possible to generate a correlation between river stage and river discharge.

Sampling Methodsampling

- Composite samples
- One sample every 14 hours
- Storm Sampling
 - Composite samples
 - One sample every two hours
 - Triggers 0.5 ft rise in 3
 - hours
- Grab sampling
 - ~ 1 every 7 days
- Use auto sampler to continuously Monitor Stage



Results


•Stage – Discharge Rating Curve

Sample Concentrations

Loading Estimations

Stage Rating-Discharge Curve

Multiplicative Model
R-square = 97.15%
Correlation Coefficient = 0.9856
Q = 37.1363*Level^2.09726

Sample Concentrations

•Analyses were determined from three types of samples; grab samples, composite samples and storm samples.

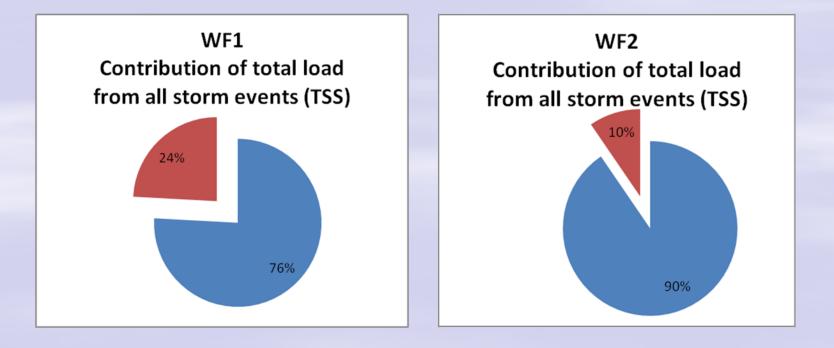
Outliers for grab and composite samples were defined and then removed from the data set (3*STDEV).

	WF-1	WF-2
	Grab	Grab
	Samples	Samples
Parameter	(mean)	(mean)
Orthophosphate (mg/L)	0.008	0.008
Nitrate-Nitrogen (mg/L)	0.414	0.384
TSS (mg/L)	3	4
Turbidity (NTU)	4	4
TP (mg/L)	0.026	0.025
TKN (mg/L)	0.084	0.092
Ammonia-Nitrogen (mg/L)	0.011	0.011
Sulfate (mg/L)	3.223	4.538
Chloride (mg/L)	2.324	2.423

	WF-1	WF-2
Parameter	Composite Samples (mean)	Composite Samples (mean)
Orthophosphate (mg/L)	0.013	0.014
Nitrate-Nitrogen (mg/L)	0.366	0.368
TSS (mg/L)	5	7
Turbidity (NTU)	6	4
TP (mg/L)	0.042	0.049
TKN (mg/L)	0.120	0.139
Ammonia-Nitrogen (mg/L)	0.024	0.019
Sulfate (mg/L)	3.155	4.592
Chloride (mg/L)	2.920	2.261

	WF-1 (17 Events)	WF-2 (17 Events)
Parameter	Storm Samples (mean)	Storm Samples (mean)
Orthophosphate (mg/L)	0.028	0.022
Nitrate-Nitrogen (mg/L)	0.595	0.617
TSS (mg/L)	188	172
Turbidity (NTU)	155	158
TP (mg/L)	0.383	0.334
TKN (mg/L)	0.858	0.663
Ammonia-Nitrogen (mg/L)	0.025	0.029
Sulfate (mg/L)	4.303	4.434
Chloride (mg/L)	3.320	3.281

Loading Estimations


•Discharge was estimated for the project period.

Loading was calculated from all samples by numeric integration method.

LOADING (lbs/project period)	WF1 (lbs)	WF2 (lbs)
ORP	5,765	4,506
Nitrate	113,752	114,603
TSS	11,938,985	23,296,819
ТР	30,065	60,917
TKN	69,817	129,365
NH3	4,550	5,091
Sulfate	968,090	1,088,864
Chloride	748,453	705,720

Loading Estimations A sobering thought...

Storm Event Loadings	WF1 (18 events)	WF2 (22 events)
TSS (lbs)	9,056,509	21,070,583
Compared Storms	WF1 (17 events)	WF2 (17 events)
TSS (lbs)	8,991,961	8,053,128

Dan DeVun Ecological Conservation Organization devun@ecoconservation.org (501) 372-7895